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Synthesis of 60-Hydroxypaclitaxel, the Major Human Metabolite of Paclitaxel
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hydroxy-7-epipaclitaxel, which was prepared from pachtaxel in four steps in high yield. Various epimerization
conditions were investigated, and the optimum conditions using DBU in xylenes afforded 80-88% isolated yield based
on unrecovered starting material, along with 4-deacetyl analogs as minor products. The stereochemistry of paclitaxel
6,7-epoxide was revised in the course of this work. © 1998 Elsevier Science L.td. All rights reserved.

Paclitaxel, as one of the most important anti-cancer drugs currently on the market for ovarian and breast
cancer, has generated wide interest in various areas,! and extensive chemical and SAR studies have been carried
out.2 Extensive pharmacological investigations concerning the metabolism of paclitaxel have also been

performed, especially after it entered Phase Il clinical trials in the late
- Acq p_ QH IOQn'n 3-5 ath i virrn and in viva chiidiac An ite matalanlicm in animale
Y pH LUV O AIURLL oI VLT U QLINL U7 ViEVUD JSLUULILVD Ul 1D 1IIAAGUAIIIDILL 111 allliialy
" and humans have been reported recently.4.6-10 6o-Hydroxy-paclitaxel (1)
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s rats it is apparently not a biotransformation product.”9 Due to the small

) quantity of purified materials (usually sub-nanomolar) that could be
isolated through biological pathways, a synthetic method for the preparation of 6ai-hydroxypaclitaxel from the
parent compound paclitaxel in relatively large amounts was desirable for studies of biological activity as well as
for providing an HPLC standard for monitoring drug disposition in patients who take paclitaxel.

The other major metabolites of paclitaxel are hydroxylated on its aromatic rings, and their syntheses could
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hydroxypaclitaxel requires modification of the taxane ring system itseif, and proved to be a difficuit one.

Our initial approach was to open the epoxide ring of 2'-TBDMS-6p,7B-epoxypaclitaxel (2), which was
prepared from paclitaxel as previously described.!? It was envisioned that this transformation would occur
under acidic conditions, and this strategy was expected to be both straightforward and stereoselective. In the
event, however, the oxirane ring proved to be much more stable under acidic conditions than the oxetane ring,
and various attempts to carry out a selective oxirane ring-opening only yielded products with opened oxetane

gs. This result thus confirms the great susceptibility of the oxetane ring of paclitaxel to electrophilic reagents,

i 11t L1 it & JILILY 115 ACLLLUUILLLIG

- a tlas rdea PV e Y 2| 7 b maa atrara th r:t tarannihamaiotey

LI | e ) | 4

e thus carried out further studies of
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unambiguous support for the altemnative a-configuration, and showed that paclitaxel 6,7-epoxide has the
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previously reported!? must thus have been due to some spectroscopic artefact. The stereochemistry of the 6,7-
epoxide in a related compound has been confirmed independently by X-ray crystallography.!4
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Since 2'-TBDMS-60-hydroxy-7-epipaclitaxel (5) can be obtained in high yield in four steps from
paclitaxel via the intermediate alkene 4,'% epimerization of the 7a-hydroxyl group in 5 to the normal B-position
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(DBU) at 80 °C afforded a single product whic

S in anhydrous toluene with 1,8-diazal 4 Olundec-7-ene
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hydroxypaclitaxei (6) in 12% yield, along with 84% unreacted starting materia
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Scheme (a) 0sO,4, NMO, THF/H,0, 90%; (b) DBU, toluene, 80°C, or entry 2-7 in Table 1; (c) HF/pyridine, THF, 71-82%.
This result parallels a recent study on the epimerization of the 7-hydroxyl group of paclitaxel itself and of
other related derivatives.!® Although the yield obtained was low in absolute terms, the yield based on

unrecovered starting material was an acceptable 75%, suggesting that this would be a viable route for the
preparation of the desired metabolite. Since the epimerization was essentially an equilibrium reaction, we
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decided to optimize reactio
the use of similar hindered bases to DBU such as 1,5-diazabicyclo[4,3,0]non-5-ene (DBN) and 1,4-
diazabicyclo[2,2,2]-octane (Dabco™), the use of different temperatures, and the presence of activated 4 A
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molecular sieves. In addition to the desired product 6, small amounts of the 4-deacetyl product 7 were formed
under most conditions; the results of these studies are summarized in the Table below.
From these studies it is clear that DBU in xylenes at 80 °C (entry 3) gives the best results, with 15%
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Table: Isolated Yields of the Epimerization Reaction Under Different Conditions

Entry Reaction Conditions 5 6 7
1 DBU, toluene, 80°C, 1.5 h 84% 12% <2%
2 DBU, toluene, 90 °C, 2.5 h 43% 9-11% 11-12%
3 DBU, xylenes, 80 °C, 1.5h 83% i5% <2%
4 DBU, xylenes, mol. sieves, 80 °C, 1.5 h 86% 12% <2%
5 DBN, xylenes, 80 °C, 1.5 h 92% 7% <2%
6 Dabco™, xylenes, 80 °C, 1.5h 99% 0 0
7 DBU, xylenes, 70 °C, 1 h 92% 7% 1%
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Lower temperatures (eniry 7) give lower
yields for both products 6 and 7, while higher temperatures and prolonged treatment (entry 2) give larger
amounts of 4-deacetyl derivative 7 together with other side products. DBN was worse than DBU in terms of
turnover, and Dabco™ gave almost no reaction; this could be attributed to its steric bulk and weaker basicity or
both. The use of anhydrous conditions was believed to be critical, but molecular sieves appeared to be
unnecessary as long as the solvents and bases were appropriately dried. Attempts were made to trap the 7B-
hydroxyl group with chlorotriethylsilane so as to drive the equilibrium to completion, but the use of different
bases (DBU or NaH) and different substrates failed to give any of the desired 73-O-(triethylsilyl) derivatives.
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Interestingly, the A_de_aretvlated nrnd ct 7 still retained
assumption that the strong intramolecular hydrogen bonding observed between the 7a-hydroxyl proton and the
acyl oxygen of the C-4 acetaie!8 might be the main reason for the facile and favorable epimerization of paclitaxel

CH r . CH + to7-epipaclitaxel in base. A possible explanation for
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Figure conformation in such a way that the following aldol
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metabolite of paclitaxel in about 50% overall yield based on unrecovered starting material.
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NaHCO;, H,O and brine, dried over Na,;SOy, and concentrated under reduced pressure. The residue was
punﬁed by prcparatlvc TLC on silica gel (EtOAc:hexanes 6:4) to give 6 (3.0 mg, 15%) and recovered 5
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